Gujarati
Hindi
6.System of Particles and Rotational Motion
medium

A disc of mass  $M$  and radius  $R$  is rolling with angular speed $\omega $ on a horizontal plane as shown. The magnitude of angular momentum of the disc about the origin $O$ is

A

$\frac {1}{2} MR^2\omega $

B

$MR^2\omega $

C

$\frac {3}{2} MR^2\omega $

D

$2MR^2\omega $

Solution

Angular momentum of disc about origin is $:$

$\mathrm{L}=\mathrm{I} \omega+\mathrm{mV}\left(\mathrm{r}_{1}\right)$

$=\frac{\mathrm{MR}^{2}}{2} \omega+\mathrm{mV}(\mathrm{R})$

$=\frac{\mathrm{MR}^{2}}{2} \omega+\mathrm{M}(\omega \mathrm{R})(\mathrm{R})$

$=\frac{3}{2} \mathrm{M} \omega \mathrm{R}^{2}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.